

INCL CONTROLLER SSD1306B FOR SPI AND I2C

FEATURES

- 102x64 DOTS (RELATES TO 8x17 CHARACTER OR 4x12 LARGE CHARACTER)
- HIGH CONTRAST OLED DISPLAY
- INTEGRATED CONTROLLER SSD1306B
- SPI INTERFACE: MOSI, CLK, CS, D/C
- I2C INTERFACE: SDA, SCL
- WIDE TEMPERATURE RANGE (T_{OP} -40°C +80°C)
- NO MOUNTING REQUIRED: JUST PUT INTO PCB
- 3 VERSIONS (WITH / W.O. POLARISOR AND PROTECTION GLASS) IN VARIOUS COLORS)
- FAST RESPONSE TIME, NO AFTERGLOW

ORDERING CODES

GRAPHIC 102x64, yellow, black background, incl. protection glass
 GRAPHIC 102x64, yellow, black background, w./o. protection glass
 GRAPHIC 102x64, white, black background, w./o. protection glass
 EA OLEDS102-6LGA
 EA OLEDS102-6LWA

WITH A MINIMUM ORDER QTY. OF 10,000 PCS.

GRAPHIC 128x64, with Polariser (Standard)

x: E = Green B = Blue

R = Red

ACCESSORIES

TEST BOARD WITH USB-INTERFACE

SOCKET 4.8mm HOCH (2 PCS. ARE REQUIRED)

TOUCHPANEL, 4-WIRE ANALOGUE SELF-ADHESIVE

TOUCHPANEL, PCAP, SELF-ADHESIVE

ZIFF CONNECTOR FOR TOUCH, BOTTOM CONTACT

• ZIFF CONNECTOR FOR PCAP TOUCH, BOTTOM CONTACT ONLY IN COMBINATION WITH EA OLEDS 102-6GGA.

EA 9781-2USB

EA FL-14P

EA TOUCH102-1*)

EA OLEDS102-6LxA

EA TOUCH102-17C1

Issue: 12-2024

EA WF100-04S

EA WF100-06S

DISPLAY VISIONS GmbH Zeppelinstraße 19 D-82205 Gilching Germany Fon: +49 (0)8105-7780 90 Fax: +49 (0)8105-7780 99 e-Mail: info@lcd-module.de

Web: www.lcd-module.de

EA OLED SERIES

With its EA OLED series DISPLAY VISIONS launched worldwide the first display family with OLED-technology for direct mounting and soldering. In comparison to standard displays there's no FFC/FPC cable/connector that may lose contact, this OLED series will be soldered directly or put into a standard 2.54 mm precision socket.

It is designed for compact handheld equipment and provides a lot real advantages:

- Extreme compact with a large viewing area
- Super flat with 2.4 mm (without frontal protection glass)
- SPI and I2C interface
- Simple mounting with direct soldering
- Ex stock available from 1 pc. off
- Long life time (>50,000h for yellow)
- Wide temperature range (-40..+80°C)
- Fast response time (10µs), no afterglow

VERSIONS

The EA OLEDS102-6 is available in 3 different versions:

EA OLEDS102-6GGA / Allround

This module is perfect for rough environment. An additional frontal glass protects the display against scratch, shock and UV light. Thanks to its integrated polariser there's no need for an additionally smoked glass.

EA OLEDS102-6LGA and -6LWA / Flat

This module is the standard module and does fit for the most applications. The flat design (2.4 mm) makes the display perfect for smallest equipment. The background is always deep black for best contrast.

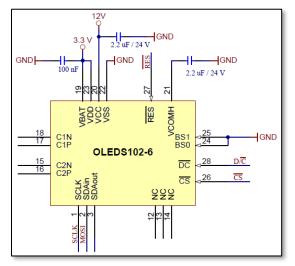
COLORS (CUSTOM MADE)

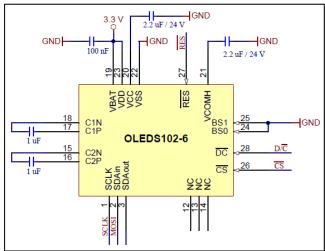
The standard colors are yellow and white.

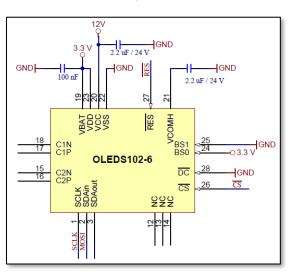
The flat version EA OLEDS102-6LGA is on customers request available in 3 more colors. The minimum order quantity is 10,000 pcs., lead time is about 20 weeks. Samples are available on request.

Interface and software are 100% compatible. The yellow color provides highest brightness and longest life time.

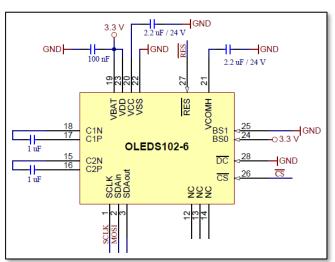
EA OLEDS102-6LEA

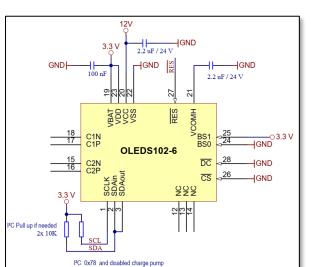


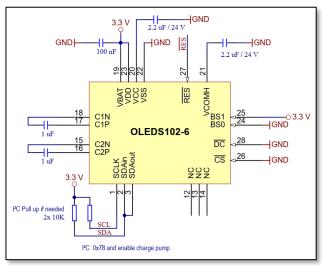

EA OLEDS102-6LRA


EA OLEDS102-6LBA

APPLICATION EXAMPLES

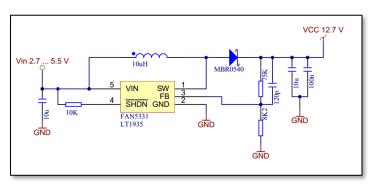



4 wire SPI, disabled charge pump


4 wire SPI single supply 3.3V

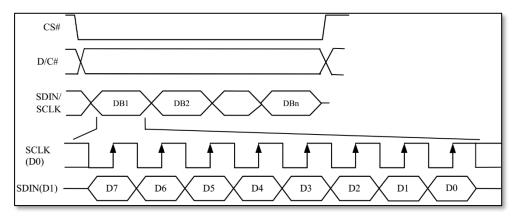
3 wire SPI, disabled charge pump

3 wire SPI single supply 3.3V

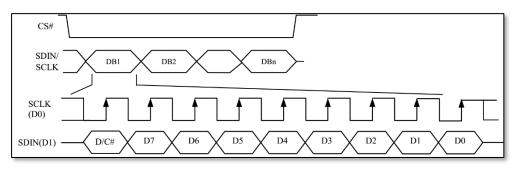


I²C (0x78), disabled charge pump

I²C (0x78) single supply 3.3V


POWER SUPPLY GENERATOR

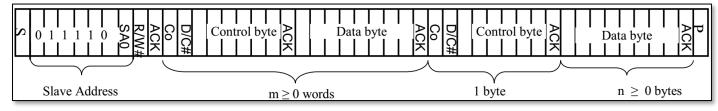
Voltage converter 3.3V-12 V (FAN5331, LT1935)


DATA TRANSFER 4-WIRE SPI (8 BIT)

Data transmission for SPI is unidirectional, that means that data can only be written, there's no data read option. Selection for writing data or command is done with the D/C line. A busy check is not necessary at all. Clock rate may be up to 10 MHz. Data transmission is based on SPI mode 3, MSB first. For more details please refer to the controllers data sheet SSD1306B.

DATA TRANSFER 3-WIRE SPI (9 BIT)

Data transmission for SPI is unidirectional, that means that data can only be written, there's no data read option. Selection for writing data or command is done with the first bit of the 9 bit data transfer. A busy check is not necessary at all. Clock rate



may be up to 10 MHz. Data transmission is based on SPI mode 3, MSB first (9 bit). For more details please refer to the controllers data sheet SSD1306B.

DATA TRANSFER I²C

The I²C mode provides a bi-directional data transmission: That means that data can be written and read. With the pin SA0 the I²C address can be changed (L: 0x78 or 0x3C, H:0x7A or 0x3D). So up to 2 displays may be driven on 1 bus. The clock rate may be up to 400 KHz. Please make sure when defining the pull-up resistors that the internal resistance of the display is 600..1000 Ω . This affects the low level when reading data and ACK bit.

Attention: When reading data, after the command for page- or column address there need to be a dummy read (discard the first byte).

Control byte: C_o (Continuation bit) = 0 \rightarrow Display data do follow; 1 \rightarrow refer D/C bit

GRAPHIC RAM

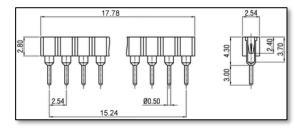
The EA OLEDS102-6 comes with an integrated display RAM. Each byte represents 8 dots. For more details please refer to the controllers data sheet SSD1306B, available on our website at

https://www.lcd-module.de/fileadmin/eng/pdf/zubehoer/SSD1306B_1.1.pdf.

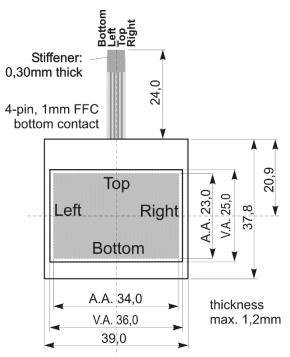
13	Column address 114
D ₀	Page 0
D7	Page 0
D0	Page 1
D7	Page 1
D ₀	Page 2
D7	1 age 2
D0 ₽	Page 3
_	1 age 5
D0 ≀ D7	Page 4
D7	i age 4
Do	Page 5
D7	1 age 5
D0 ≥ D7	Page 6
	i age o
D ₀	Page 7
D7	i age i

COMMAND TABLE (ABSTRACT)

This is a collection of the most important commands. The data sheet SSD1306B Page 7 provides the full list plus a detailed description.


Command	D/	Command Code						Description			
Command	С	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Description
Contrast	0	81	1	0	0	0	0	0	0	1	Double byte command to select 1
Control	0	7F	A ₇	A ₆	A ₅	A ₄	A ₃	A_2	A ₁	A_0	out of 256 contrast steps. Contrast increases as the value increases.
Display	0	AE/ AF	1	0	1	0	1	1	1	X ₀	X ₀ =0: Display OFF (sleep mode) (RESET)
On / Off		AF									X ₀ =1: Display ON in normal mode
Set	0	21	0	0	1	0	0	0	0	1	Setup column start and end
Column	0	0_	A ₇	A_6	A ₅	A_4	A_3	A_2	A ₁	A_0	address A[7:0] : Column start address,
address	0	7F	B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	range : 0-127d, (RESET = 0)
											B[7:0]: Column end address, range
											: 0-127d, RESET = 127) Note: This command is only for
											horizontal or vertical addressing
				_				_			mode.
Set Page address	0 0	22 0	0 X	0 X	1 X	0 X	0 X	0 A ₂	1 A ₁	0 A ₀	Setup page start and end address A[2:0]: Page start Address, range
address	0	7	X	X	X	X	X	H ₂ B ₂	B₁	B_0	: 0-7d, (RESET = 0)
	ľ										B[2:0]: Page end Address, range:
											0-7d, (RESET = 7) Note: This command is only for
											horizontal or vertical addressing
D: 1		40	0	4					_		mode.
Display Start Line	0	40	0	1	A ₅	A ₄	A ₃	A ₂	A ₁	A_0	Set display RAM display start line register from 0-63 using
Start Line		7F									$X_5X_3X_2X_1X_0$.
											Display start line register is reset to
Segment	0	A0/	1	0	1	0	0	0	0	X ₀	0 during RESET. X ₀ =0: column address 0 is mapped
remap	ľ	A1								7.0	to SEG0 (RESET)
											X_0 =1: column address 127 is mapped to SEG0
Com	0	C0/	1	1	0	0	X ₃	0	0	0	X ₃ =0: normal mode (RESET) Scan
output		C8									from COM0 to COM[N -1]
scan											X ₃ =1: remapped mode. Scan from COM[N-1] to COM0
direction											Where N is the Multiplex ratio
RAM Data	1	XX	D ₇	D ₆	D_5	D_4	D_3	D_2	D_1	D_0	D ₇ -D ₀ is written to RAM.

INITIALISATION EXAMPLE - SINGLE SUPPLY 3.3V


```
void init OLEDS102(void)
{
  send command(0x40);
                                                              //Set Display start line
  send command(0xA0);
                                                              //Bottom View no Segment remap
  send command(0 \times C0);
                                                              //Bottom View COM scan direction normal
  send command(0x2E);
                                                              //StartColumnAddress
   send_command(0x8D); send_command(0x95);
                                                              //Switch Charge Pump (9V)
  send_command(0 \times 20); send_command(0 \times 02);
                                                              //Set Memory AddressMode
                                                              //Set Brightness
  send_command(0x81); send_command(0xFF);
  send_command(0xD5); send_command(0x40);
                                                              //Set Display Clock Divide
                                                              //Set Precharge Periode
  send_command(0xD9); send_command(0xF1);
  send_command(0xAD); send_command(0x30);
                                                              //Set Internal Ref
  send command(0 \times 21); send command(0 \times 0D); send command(0 \times 72);
                                                                       //Set ColumnAddress
  send_command(0 \times 22); send_command(0 \times 00); send_command(0 \times 3F);
                                                                      //Set PageAddress
  send_command(@xAF);
                                                              //Display on
}
```

ACCESSORY: SOCKET EA FL-14P

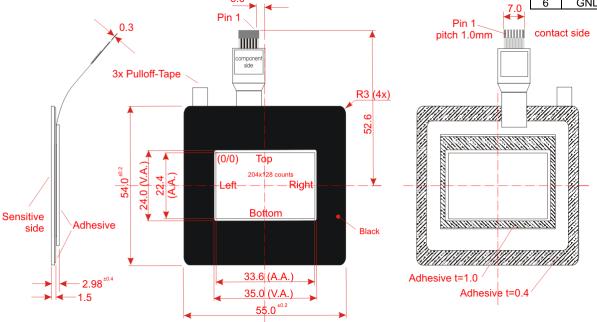
Using a 14-pin socket makes the display replaceable and adapts the height. Those socket may also be soldered automatically by wave soldering or reflow process. Each display requires 2 pcs.

ACCESSORY: TOUCHPANEL EA TOUCH102-1

As an accessory there is an analogue touchpanel available. It comes with a self-adhesive glue on its rear side. Connection is done via FFC, pitch 1.0 mm. Any standard ZIFF connector can be used (e.g. EA WF100-04S). Bending radius is minimum 5 mm. Interfacing to a processor can be either done by an external touch panel controller or with a controller that is featured with analogue input. The touch panel is similar to a potentiometer: connecting a voltage of e.g. 3.3 V to the pins Top-Bottom makes it possible to read out a voltage on pin Left or Right which is linear to the Y-coordinate of the pressed point. The X-coordinate

will result when the voltage will be supplied to Left-Right and measurement is done at Top or Bottom. The pinout of the connecting cable is shown in the drawing.

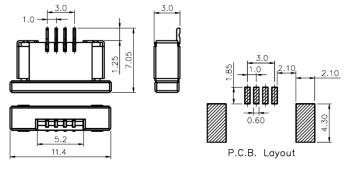
Specification							
Value	min	max	Unit				
Top-Bottom	100	400	Ω				
Left-Right	400	1000	Ω				
Voltage	3	12	V				
Current	5	25	mA				
Linearity	1,5		%				
Force	45	65	g				
Contact Bounce	5	10	ms				
T _{op.}	-20	+60	°C				
T _{Stor.}	-20	+70	°C				
Transmission	75	85	%				
Lifetime	100000		Cycles				


connection there is a ZIF connector with pitch 1 mm, e.g. EA WF100-04S.

Only in combination with the EA OLEDS102-6GGA.

TOUCH PANEL EA TOUCH102-17C1 (PCAP, CAPACITIVE)

As an accessory we provide a suitable, capacitive touch panel (PCAP). It comes already with controller (GT5663) and integrated I²C bus. It supplies the coordinates in double resolution 204x128. The line INT shows, if data are available to be read out. The I²C bus address is 0xBA (0x5D). For connection there is a ZIF connector with pitch 1.0 mm, e.g. EA WF100-06S.

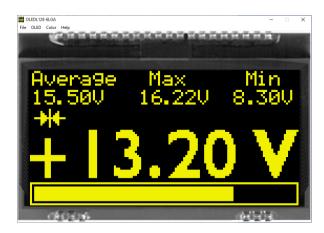

Pinout								
Pin	Description							
1	SCL	Int. 4k7 Pull-up						
2	SDA	Int. 4k7 Pull-up						
3	VDD	Н						
4	RES	L						
5	INT	Internal Pull-up						
6	GND							

ACCESSORY: ZIFF CONNECTOR EA WF100-04S

The ZIFF connector matches perfect to the touch panel EA TOUCH102-1. It provides 4 pins with 1.0 mm pitch. Connection is bottom contact.

The top contact version is called EA WF100-04T.

USB-TEST BOARD EA 9781-2USB


For easy startup, a USB test board is available that can be connected to a PC. A USB cable and Windows software is supplied with the product. It allows text and images (BMP) to displayed directly on the connected display. The board provides many connectors matching different OLED displays from DISPLAY VISIONS.

You will find more information on the test board in the data sheet <u>EA 9781-2USB</u>.

SIMULATION WITH WINDOWS

A little software tool called "OLED Simulator" shows the OLED display with individual content. It also drives the USB test board with the real display to show same content. You can download the software free from our website. Note that all functions of the simulation software do run also without the USB board. https://www.lcd-module.de/fileadmin/downloads/startoled v20.zip

SPECIFICATION

Unless otherwise specified, VSS = 0V , VDD = 1.8 - 3.3V (Ta = 25°C)

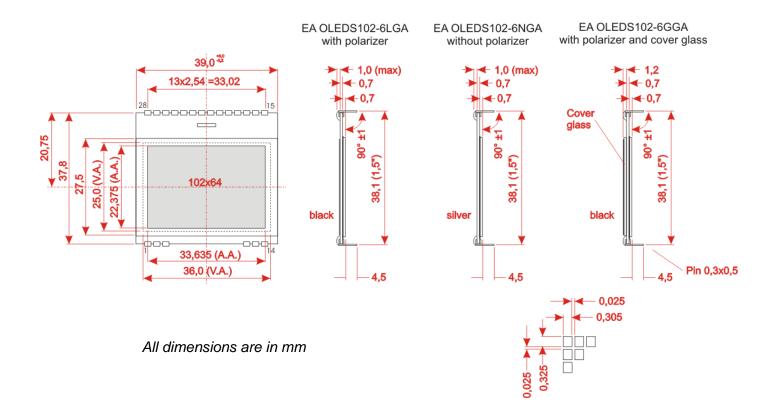
Value	Condition	min	typ	max	Unit
Operating Temperature		-40		+80	°C
Storage Temperature		-40		+80	°C
Storage Humidity	<40°C			90	%RH
Operating Voltage VDD logic supply		1.8	3.0	3.3	V
Operating Voltage VCC OLED supply			12.5	13.0	V
High Logic input level		0.8 x VDD			
Low Logic input level				0.2 x VDD	V
	All Pixel off		0,5		mA
Power Supply VCC ¹⁾	Demo picture ²⁾		13		mA
	All Pixel on		32		mA

¹⁾ VCC= 12V, initialization 0x81,0xFF / 0xD5,0x40 / 0xD9,0x44 / 0xDB,0x20

²⁾ Demo Picture:

OPTICAL DATA

Item	Symbol Condition		min	typ	max	Unit	
View Angle	(V)θ CR≧2000		160	170		deg	
View Angle	(Η)φ	CR≧2000	160	170		deg	
Contrast Ratio	CR	Dark Room	2000:1				
Doonongo Timo	T rise			10		μs	
Response Time	T fall			10		μs	
1	L	-6GGA / -6LGA	90	100		cd/m²	
Luminance ¹⁾		-6NGA	150	200		cd/m²	
CIE 1931 x(Yellow)		Dark Room	0.45	0.47	0.49		
CIE 1931 y(Yellow)		Dark Room	0.48	0.50	0.52		
Operating	yellow	50% chess board	50,000			h ro	
Life Time ²⁾	white	50% chess board	20,000			hrs	


¹⁾ VDD= 3.3V, incl. booster FAN5331 with VCC= 12.5V

Printing and typographical errors reserved. DISPLAY VISIONS reserves the right to change specifications without prior notice.

²⁾ T_a=25°C, operating life time is defined the amount of time until the luminance has decayed to 50% of the initial value. Screen saving mode is recommended to extend life time

DIMENSIONS EA OLEDS102-6

PINOUT

Pin	Symbol		Pin	Symbol	Description
1	D0	SPI: SCLK, I ² C: SCL	15	C2N	Charge pump capacitor 1uF/10V
2	D1	SPI: MOSI, I ² C: SDA _{in}	16	C2P	Charge pump capacitor
3	D2	SPI: NC, I ² C: SDA _{out}	17	C1P	Charge pump capacitor 1uF/10V
4			18	C1N	Charge pump capacitor
5			19	VBAT	Power supply for charge pump
6			20	VCC	OLED driving voltage
7			21	VCOMH	Common deselect level. (Internally regulated)
8			22	GND	Ground
9			23	VDD	Typ. 3.3 V logic power supply
10			24	BS0	00 = 4-Wire SPI; 01 = 3-Wire SPI
11			25	BS1	10 = I ² C Interface
12	NC		26	CS	Chip Select (active low)
13	NC		27	RES	Reset (active low)
14	NC		28	D/C	SPI (4-Wire): L=Command, H=Data, I ² C: SA0 (Address)

Note:

- OLED displays are generally not suited for wave or reflow soldering. Temperatures of over 80°C can cause lasting damage.
- The surfaces of the displays are protected from scratching by self-adhesive protective foil. Please remove before mounting

